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At. each point of space the principal curvatures correspond to three
directions, mutually perpendicular to one another. When the curves
tangent to these directions are the curves of intersection of a triply-or-
thogonal system of surfaces, the space is called normal by Bianchi. All
the spaces referred to above are normal. For the cases (7) and (8) the
tangents to the curves of intersection xi = const., xj = const. are the
principal directions.

For the cases of § 4 we put x 2=ex+ . Then for (11), the curves of
intersection of surfaces xi = const., X2 = const., x3 = const. have the
principal directions. For (14) and the case k * 1, the principal di-
rections are given by xi = const., x3 = const., and the orthogonal systems
of curves on X2 = const. defined by

(as )+) 2 [a+iaPy+ - a )]dxldx3

- y(a' - ay1)dX32 = 0.
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8. Theform (3 2 2). This form, written symbolically as (pz) (rx)(sy),
where z is a point in S3, x a point in S2, and y a point in S2', has 36 co-
efficients and therefore 35-15-8-8 = 4 absolute projective constants.
Points x, y determine a plane which becomes indeterminate for six pairs
x, y = pi q,; (i = 1., 6) which form associated six points. They are
the double singular points of a Cremona transformation T of the fifth
order between the planes S., S,. A given plane u is determined by oo I

pairs x, y which lie, respectively, on the cubic curves, (pp'p"u) (rx) (r'x)
(r"x) (ss's') = 0, (pp'p"u) (rr'r") (sy) (sy) (s"y) = 0 These curves
pass, respectively, through the six points pi and the six points qt. Thus
the given form is associated with a general cubic surface, (pz) (p'z) (p"z)
(rr'r") (ss's") = 0, with an isolated double-six of lines and separated
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line-sixes. The mapping of the surface from the planes Sx and S,y is
given by the above systems of cubics.

9. Theform (1 1 2 2).-In the space figure just described we insert a quaciric
Q with generator.. t, x. The point coordinates z can be replaced by bilinear
expressions in t, T and the form (3 2 2) becomes a form (pr) (irt) (rx) (sy)
general of its type, with thirteen absolute constants corresponding to the
four absolute constants of the above cubic surface and the nine additional
constants for the inserted quadric. The quadric meets the cubic surface
in a normal curve of genus 4 so that we have in space the figure of the
normal sextic and a particular one of the c I cubic surfaces through it.
In the planes Sx, S, we have projectively general (with thirteen absolute
constants) sextics of genus 4 with nodes at pi and qj, respectively, trans-
forms of each other under T. The canonical adjoints of these sextics,
with isolated gi3's, are obtained by substituting for u in 8 the proper
bilinear expressions in t, r; while a similar substitution for z in the equation
of the cubic surface gives the equation on the quadric of the normal curve.
We may therefore regard the general form (1 1 2 2) as a definition of the
projectively general plane sextic of genus 4.

10. The forms F, F on the conic K(r). Counter sextics.-We mark the
conic K(T) on the plane S. and plot with reference to it the two counter
sextics 52(t) and S2(t). For each there is a cusp locus of perspective cubics
6C(T) and GC(T). Similarly we mark on a plane Sy the conic K(t) and
plot with reference to it the two counter sectics S1(T), S1(T) which are
paired with the above counter sextics, and which have for cusp loci of
perspective cubics the sextic curves GC(t), GC(t), respectively. .A

We now consider the form F = (at)3 (ar)3 = 0 where X is a tangent
of K(T)* For variable t we have co I triangles circumscribed about K(X)
whose vertices run over a sextic curve. If t determines T,, %, T3 then the
point t, T,, T2, of this sextic curve is birationally-related to the solution t,
Tr3 of F = 0. Hence the sextic curve is birationally equivalent 'to
GC(r) and as a result of the algebraic discussion of the next two sec-
tions we prove that this sextic curve is actually GC(T). This amounts
to the effective elimination of t from (ari)3 (at)3 = 0, (ar2)3 (at)3 0

and the separation of the factor (r1r2)3. Hence we have on the sextic
GC(T) two gi3's such that the oo 1 t-triads are cusp triangles of perspective
cubics of S2(t) and the oo r-triads are triangles circumscribed to K(r) for
which the intersection of the lines joining each vertex to the contact of
the opposite side is the point t of 52(t). Of course a similar statement is
true of any one of the four cusp loci. %

If we polarize the form F into (ar) (aT1) (aT2) (at) (at,) (at2) and replace
the pairs T,, r2; tl, t2 by points x; y referred in Darboux coordinates to the
conics K(X); K(t) in Sx; Sy, respectively, we have a form (7rx) (dr) (5t) (py)
of the type discussed in 9. Hence the sextics GC(r) and GC(t) are trans-
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forms of each other under the quintic Cremona transformation T but on
the two the role of the t and r triads with reference to the rational sextics
and conicsK is reversed. It may be shown that the projective peculiarity
(equivalent to four conditions) of our birationally general sextics GC(r)
and GC(r) is that their r triads envelop a conic K(r). This same property
belongs to the t-triads after transformation of GC(r) by T (or GC(r) by
the corresponding T) into a sextic in the plane S,,.
We have mentioned in I 7 certain intersectional properties of the conic

b, the rational sextic S2(t), and the cusp locus GC(r). Analogous results
for the conic K(r), the sextic 52(t), and the locus GC(T) are as follows.
The conic K(r) meets S2(t) in 12 points whose parameters t on S2(t) are
the branch points of the function r(t) determined by F = 0, and whose
parameters T on K(T) are the branch point values of this function. The
12 residual function values r furnish 12 common tangents of K(T) and
GC(r), i.e., the tangents to GC(r) at the 12 coincidences of gil3(r) upon it
touch K(r). The remaining common tangents of K(r) and GC(r) are
double tangents of GC(r) whose parameters on K(T) are the branch points
of the function t(r) in F = 0. The two further tangents to K(T) from
the contacts with GC(T) of each double tangent meet in a point which is
a coincidence of g13(t) on GC(r).

11. The reciprocity between the forms F, F; algebraic discussion.-We
denote by A the determinant of the coefficients (without binomial factors)
of the form F; the coefficients of F are then, to within numerical factors,
three-row minors of A. The reciprocity between the forms F, F is then
brought out by the fact that the covariant F formed for F as a ground form
is again F.A2/34. The invariant (aA)3 (aA)3 is 4 A. This reciprocity
fails when A vanishes. Then the four cubics in t furnished by F are
linearly dependent. When expressed in terms of three the coefficients
in F are three cubics in r, and the form F = 0 can be interpreted as the
incidence condition of point r on a rational plane cubic curve C1 with line
t -of a rational plane cubic envelope C2. In this case the form F factors
into two cubics (Ar)3.(At)3, the conjugate cubics of the rational curves
C1, C2. Now all the (usually non-vanishing) odd transvectants of the
double form F will vanish whence in the general case they contain the
factor A and are of the second degree for F. From their degree and orders
they can be identified at once with 2/9 (br)4 (gt)4 (aa') (aa') (ar)2
(a'Tr)I (at)2 (a't)2; 8 a- (aa')3 (aa')3; 4/3 ('yt)4 = (aa')3 (aa') (at)2 (a't)2;
4/3(CT)4 = (aa')3 (aa') (ar)2 (a'r)2. With respect to the original space
cubics C1, C2 these forms are interpreted as follows. The form (br)4 (,Bt)4
vanishes when tangent r of Ci meets tangent t of C2; 5 = 0 if the
null systems of C1, C2 are apolar; ('yt)4 or (Cr)4 vanishes if the tangent t
of 2 or the tangent r of C1 is a line of the null system of the other curve.
The reciprocity between the dual forms F, F is due algebraically to
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the fact that their coefficients are, respectively, the one- and three- row
minors of A. The four comitants of the second degree above are evidently
self-dual in meaning and therefore should involve the two-row minors of
A. Indeed we find that the 36 coefficients of the four comitants (br)4
(jt)4, ('yt)4, (CT)4, 8 are linearly independent in the 36 two-row iors of
A. The only remaining comitants of the second degree, not linear in the
minors of A, are the two sextics Si(r), S2(t).
The 36 two-row minors of a four-row determinant A, though linearly

independent, must satisfy a system of quadratic relations. It is not hard
to see that there are precisely 41 such quadratic relations. If we take
the above four comitants and form all of their comitants of total second
degree in the coefficients of the four we have a set of comitants with 666
coefficients which is the number of quadratic combinations of the 36
minors. Hence the coefficients of this new set of comitants must be
connected by a system of 41 linear relations due to the existence of the
41 quadratic relations among the minors. These relations will be expressed
by the existence of a system of syzygies of the second degree in the co-
efficients of the four comitants. We find that this system of syzygies is
(br)4 (b'r)4 (##')4 = 6[(CrT)42; (bb')4 (#t)4 (P't)4 = 6[(Qt)4]2; (bb')2 (br)2
(b"7)2 (,BB)4 = 6(cc')2 (CT)2 (C'r)2; (bb')4 (##3)2 (ft)2 (#'t)2 =6-(zY)2
('yt)2 ('y't)2; (br)4 (fl'y)4 = 6 6.(c7)4; (bc)4 (j3t)4 = 6 5.('yt)4; (bb')4 (zp')4 =

6(Qy'y)4 = 6(cc')4 = 36a2.
The 41 coefficients of these syzygies furnish the quadratic relations. The
syzygies themselves determine for given (br)4 (3t)4 the three remaining
forms (CT)4, (yt)4, 8 to within a change of sign of any two.

12. Thefundamental combinants of F, F. We have had occasion at times
to consider such pencils of cubics in t as are determined by the members
(ar1)3, (at)3, (ar2)3 (at)3 (rTr*2). If ti, t2 belong to the same member of
this pencil then the fundamental combinant of Gordan for the pencil is

= (ar)3 (at)3 (ar2)3 (atl)3
r = (a'rl)3 (a't2)3 (a'r2)3 (a't2)3

Evidently it expresses also that ri, 72 belong to the same member of- the
pencil determined by the members (ar)3 (at,)3 (aT)3 (at2)3 (t1*t2). We call
r the fundamental combinant of F, and f the corresponding fundamental
combinant of F. Each is expressible in terms of the two-row minors of A
and therefore in terms of the four comitants of 11. We find that r,
r = (rTr,2)(tlto) { (br1)2 (br2)2 (3tl)2 (t2)2 (tlt2)2.(CT1)2 (CT 2)22
(yt1)2 (yt2)2 + (t1t2)2.(r1r2)2.3}
where the upper sign holds for r and the lower sign (together with the
factor A/9) for r. Let us call the four terms within this brace, taken
with plus signs, K, L, M, N, respectively. Then the involution of binary
cubics determined in 7 by the form (7rx) (dr) (6t)3 for variable r has for
fundamental combinant (when x is replaced by ri, T2) K + L-M-N
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and the corresponding combinant for the counter sextic S2(t) rather than
S2(t) is K-L + M-N. These four involutions all arise from any one
by changing the signs of any two of the comitants ('yt)4, (CT)4, 6. In
addition to the facts derived in 10 from this set of involutions other results
are easily read off from their simple form. For example the conic b defined
in 7 for 32(t) and the corresponding conic b for S2(t) are in a pencil with
the conic K(r) and meet K(r) in the four points determined by (CT)4 = 0.


